If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x+3x^2=0
a = 3; b = 21; c = 0;
Δ = b2-4ac
Δ = 212-4·3·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-21}{2*3}=\frac{-42}{6} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+21}{2*3}=\frac{0}{6} =0 $
| 4^3(x+1)=25 | | 10-9c=9c-8 | | 4.31535+2.09n=-3.9n+3.185(0.3n-0.7) | | 3(5x-2)+4=+4=11x-3-4x | | 8(r0=3.14r^2 | | 4^3x+1=25 | | 42=2/7u | | 5/100=2/x | | 6x+4/3=2 | | 5u/7=20 | | 3-5d=-6d-d | | 2-7(4-x)+2=9 | | -2.6(1.4k+3.7)=-4.98+k | | X^2-13x+18=-5x+2 | | 7/2=2x/8 | | x-5=3-9x-18 | | 9x-3x=95 | | -b=8-2b | | 10x2-13x-3=0 | | 150=25x+150 | | −5t2+10t+3=0 | | 9b=9+8b | | 7x+5=2x+80 | | 10(3-x)=20 | | 4a–4=8+a | | -3.2(1+2.5a)=14.48-3.58a | | 2(5p-4)=3(p+4) | | 3(y+2)=4(y-2)+3y | | (2x+3)=(3x-1) | | .5p-9=-24 | | 2-x÷4+3=1 | | -3+4u=3u+6 |